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Absbsd. Variational principles for electromagnetic fields in anisotropic inhomogeneous 
media for general time dependence are derived. The natural boundary conditions resulting 
from the formulations are investigated. By including proper boundary integrals, additional 
conditions may be satisfied. This leads to fewer restrictions on the trial fields and 
consequently a wider range of applicability. 

1. Introduction 

In recent years, there has been a growing interest in the analysis of time-dependent 
electromagnetic field problems. This interest is stimulated by various applications that 
require the explicit treatment of time-dependent effects. One such application is to 
study the transmission of signals through time-varying media as exemplified by the 
ionospheric or some other ionised plasma (Felsen 1976). For target identification 
problems, the transient or the impulse response is particularly useful since it contains 
electromagnetic information about the target beside being closely related to the target 
geometry (Moffat and Mains 1975). Also, short pulses of high power are finding 
application as diagnostic tools for the study of wave-material interaction. The role of 
transients in electromagnetic exploration was recently reviewed by Lee (1979). 

There are basically two independent techniques available for solving transient 
electromagnetic problems. The usual approach to this subject followed the standard 
frequency domain technique which is subsequently transformed via Fourier series, 
Fourier or Laplace transforms to yield the desired time domain response. Alter- 
natively, a direct formulation in the time domain may be used. Advantages of such a 
direct approach were discussed by Miller and Landt (1976). 

Only a few electromagnetic transient solutions can be expressed in closed form in 
terms of standard functions. Consequently, most time domain solutions inevitably 
involve substantial computer processing or approximate techniques. 

The variational technique is finding increasing applications in solving complex 
electromagnetic problems (Cairo and Kahan 1965, Mohsen 1978a, b, Chen and Lien 
1980). The variational principle .may summarise the equations concisely and include 
some or all the physical requirements as natural boundary conditions. The variational 
computation has the property that if the trial function assumed has a first-order error, 
the functionals computed from the variational expression have a second-order error. 
Thus, it provides a systematic way of making an optimum determination of successive 
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approximations to the desired order of accuracy. Moreover, a very promising aspect of 
variational methods is the possibility of constructing various types of accuracy estimates 
of the functionals. The existence of upper and lower variational bounds on the 
functionals (Nikol’skiy and Feoktistov 1971, Kalikstein et a1 1977) enables one, in 
principle, to approach the exact value monotonically. These bounds may be found with 
the help of complementary variational principles (Arthurs 1970). 

The desired variational principle for time-dependent fields may be derived from the 
time harmonic form via application of the Fourier transform. However, a direct 
derivation in the time domain may be interesting and easier beside being applicable to 
fields whose time dependence is not Fourier transformable. It is well known that a 
general variational principle in classical physics may be based on the principle of least 
action (Morse and Feshbach 1953, Morishita and Kumagai 1977). Two variational 
expressions were derived by Welch (1960) and Cheo (1965) for scattering of time- 
dependent electromagnetic waves from a perfect conductor in free space. They 
employed Rumsey’s reaction concept (Rumsey 1954) in their derivation. Using a 
canonical approach, Anderson and Arthurs (1979) presented several variational prin- 
ciples for the electromagnetic field vectors. By invoking the condition that the trial 
fields satisfy one set of Maxwell’s equations or the remaining equations, complementary 
expressions were derived and were subsequently written in terms of auxiliary vector and 
scalar potentials. 

Most of the previous studies were concerned with homogeneous isotropic media and 
did not give enough attention to the boundary conditions at interfaces. The present 
paper provides variational principles in terms of the field vectors as well as their 
associated Hertz vectors. The media considered are, in general, inhomogeneous and 
anisotropic. A study of the natural interface and boundary conditions is presented. 
Possible modifications to include additional conditions required in the formulation are 
considered. 

2. Field equations 

The medium under consideration is non-dispersive whose permittivity E and 
permeability C; are tensor functions of position, time independent and are assumed 
non-singular so that their reciprocals exist. The source excitations J and M are the 
electric and magnetic current densities, respectively. One associates electric and 
magnetic charge densities p and m with the above current densities via the continuity 
equations. The introduction of magnetic sources, beside being useful in some appli- 
cations (Harrington 1961), puts the field equations in symmetrical form due to duality 
between electric and magnetic quantities. The sources are assumed to be located away 
from any surface of discontinuity. 

If E and H denote the electric and magnetic field vectors, D and B the electric and 
magnetic flux densities, then Maxwell’s equations read 

V x E = - B - M  V * B = m  (1) 

V X H = D + J  V . D = p  

where a dot over a function indicates derivative with respect to time. The constitutive 
relations are 

D = E E  B = GH. (3) 
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Using equations (1)-(3), the differential equations satisfied by E and H are given by 

VX (C;-'V X E )  + Eg= - J -  V X (C;-'&f) (4) 
and 

V x (k-'V x H )  + C ; ~  = -M + V x (E- 'J ) .  
Introducing the electric and magnetic Hertz vectors, it may be shown (Mohsen 1976) 
that both satisfy equations similar to (4) and ( 5 )  with appropriate source functions. Thus 
the problem of treating individual field or Hertz vectors reduces to the study of an 
equation in the form 

(6) U(b, 4)P -V x W +@P = Q 

where W = p'V x P. 

3. Derivation of the combined field variational principle 

Since in the medium under consideration C; and E' are non-symmetric tensors, a proper 
adjoint operator is defined in which these tensors are replaced by their transposes. The 
solution to this problem is derived using the original sources and this adjoint solution is 
denoted by (E", Ha).  

If the medium occupies a volume V bounded by a surface S and the time considered 
is between time t = tl and t = tz, we define a volume inner product as 

(P, Q) = I I P Q" d V dt. 
11 v 

It is also useful to introduce a surface product over a surface S as 

(P, Q)s = 1" P Q" dS dt. 
t l  s 

(7) 

Following previous time-harmonic analysis (Mohsen 1978a), an appropriate 
functional may be written as 

F = ( V X  E, H ) - ( V X H ,  ~ ) + ( f i l j ,  H)+(EE,  E )  

+ (M, H )  - (H,  M )  + (J, E )  -(E, J ) .  (9) 

To prove that equation (9) yields the required variational principle, one takes the first 
variation of F to obtain 

SF = (v x E + c;H+M, S H )  - (v x H - EE - J, SE) - (SH, v x E + ;H+ M )  

+(SE, VXH-EE-J) - (SE,  f i x  H)s+(SH,  P X E)s (10) 

where fi  is a unit vector normal to S. In the process of derivation, use is made of 
variations of time derivatives of the form (SA, B) which is given by: 

(SA,B)=jr 'I  1, vdt d (SA) -BadVdt  

= jv SA - B" d V] 1: - jv SA B" d V dt. 
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The first term in the integration by parts reduces to zero since the field is assumed fixed 
at the ends of the interval and we obtain 

(12) 

Also, Green’s identity is used in the derivation. Consequently, at any surface of 
discontinuity surface integrals similar to those in (10) are to be added on both sides of 
the surface. 

The stationarity of the functional given by (9) implies that the fields satisfy 
Maxwell’s equations. The natural boundary conditions are the continuity of the 
tangential electric and magnetic fields at any surface of discontinuity, while these 
tangential fields vanish on the boundary. If the boundary is perfectly conducting, the 
addition of (E, A x H ) s  to equation (9) yields the required conditions, i.e. that only the 
tangential electric field vanishes. 

Admissible trial fields must be continuous together with their first derivatives and 
must possess finite second derivatives everywhere except at surfaces where E and ,ti are 
discontinuous. At these surfaces, trial fields must satisfy the continuity of normal 
electric and magnetic flux densities (Berk 1956). 

(SA, B )  = -(SA, b). 

4. Derivation of variational principles in terms of one field vector 

The formulation of a variational principle in terms of one field vector only, rather than 
both E and H, has many computational advantages as pointed out by English and 
Young (1971). In the process of computation, it leads to the reduction of size of the 
solution matrices which also become denser. This reduces both the storage and time 
requirements and increases the stability of the computation. 

As pointed out previously, the electric and magnetic field vectors as well as the Hertz 
vectors satisfy equation (6). Following previous time-harmonic analysis (Mohsen 
1978b) an appropriate functional may be written as 

(13) 

That (13) yields a variational principle under variations of P and Pa may be demon- 
strated by evaluating the fir%t variation of F to obtain 

F = ( W, v x P) - (@, P) - (Q, P) - (P, Q). 

SF = (V x W + $P - Q, SP) + (SP, V x W + GP - Q )  

- ( A  x w, SP)s - (SP, A x W)s.  

The stationarity of the expression implies that the field vector satisfies the appro- 
priate equation given by equation (6). The natural boundary condition of the problem 
is the continuity of the tangential W at any surface of discontinuity while at the outer 
surface A x W = 0. 

It is to be noted that the variational principle in terms of one field vector satisfies 
only one condition at the interface while using the combined field formulation satisfies 
two conditions. If the continuity of A x P is to be implemented, surface integrals of the 
form (fi x P, P), at both sides of discontinuity at the surface Si, are to be added to 
equation (13). It is worth noting that such integrals can be multiplied by constants 
which can be used as accelerating parameters. These parameters may be useful in 
accelerating the process of computation (Davies 1973). 



Time-dependent electromagnetic problems 1005 

If P stands for H and the external boundary is perfectly conducting, the disap- 
pearance of the tangential electric field is satisfied and there is no need to add a surface 
integral as in the combined field formulation. On the other hand, if P= E, the 
tangential electric field vanishes upon the addition of ( I3 x W, + (P, I3 x W ) ,  to 
equation (1 3). 

5. Conclusion 

This paper studies the formulation of variational principles for time-dependent elec- 
tromagnetic fields in anisotropic inhomogeneous linear media. In order to deal with the 
case when C; and E' are non-symmetric tensors, a proper adjoint operator is introduced. 
The natural boundary conditions resulting from the formulation are discussed and 
means to satisfy additional required conditions are presented. This leads to increasing 
the range of applicability of the formulation and to the possibility of using simpler trial 
functions. 

For a particular problem, the choice of a certain variational formula in preference to 
others largely depends on computational and physical considerations. For example, if 
the configuration of the electric field can be guessed more readily than that of the 
magnetic field, then it is sensible to use a formula in terms of the electric vector only. 
The advantages of using electric rather than magnetic vector formulation as far as 
convergence is concerned were discussed by English and Young (1971). The question 
of uniqueness of the solution was considered for the frequency domain formulation by 
Konrad (1976). 

The present formulations encompass very general situations and simplifications 
result, naturally, upon considering particular cases. When time-harmonic variation is 
considered, the formulations are then useful in studying the propagation in waveguides, 
the cavity resonances, the estimation of scattering matrix elements, etc (Morishita and 
Kumagai 1977). The direct time-domain formulation may find a major application in 
the finite-element solutions of general time-varying electromagnetic problems. In such 
solutions, appropriate variational principles are needed in the construction of the 
procedure. 
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